CSSE 220 Day 20

Java Collections Framework
LinkedList Implementation
Work on Markov

CSSE 220 Day 20

» Reminder: Exam #2 is (next) Friday, May 2.

» In order to reduce time pressure, you
optionally may take the non-programming part
7:15-8:00 AM.

» Markov repositories:
> http://svn.cs.rose-hulman.edu/repos/220-200820-markovXXX

» Questions?
» Today:

- Java Collections
> |terators

Data Stru cture Overview
Array O(] can't do it Constant-time access by position
Stack top only top only O(1) Easy to implement as an array.
O(1)
Queue front only O(1) insert rear, remove front.
O(1)

ArrayList O(1) O(N) Constant-time access by position;
O(log n) time to find arbitrary element
if array is sorted

Linked List O(n) O(1) O(N) to find insertion position,
iterators (today) help.

HashSet/Map O(1) o(1) If table not too full

TreeSet/Map O(logN) O(log N) Kept in sorted order

MultiSet O(log N) O(log N) keep track of multiplicities

PriorityQueue min only O(log N) Can only find/remove smallest

O(1)

Tree O(log N) O(log N) If tree is balanced

Graph ON*M)? O(M)? N nodes, M edges

Network shortest path, maxFlow

Java Collections

[java.util.*
Collection

Ikthods declared in Interfaces are hidden in subtypes

See also: Legacy Collection Diagram

boolean
boolean
boalean

boolean
int

woid
boolean
boolean
fteratar
boolean
int

e talkhauscn 6 Viersion 0.9 Copyright 200204 by Markus Falkhausen. All Aghts reserved

isEmpty ()
add / remove (Object o)
add f remove Al {Collection &)

equals (Object o)
hashCade ()

clear)

contains (Object o)
contains Al (Collection &)
iterator O

retain Al {Zollection ¢}
size ()

Object[] todmay ()

Object[] tomay (Object afl)

Object get { set (int index)
— Object set (int index, Object element]

T — wvoid add (int index, Object element)

Object

———— boolean addAl {int index, Collection c)

remove (int index)

indlex Of (Object o)

Comparator comparator ()
Object first ()
SortedSet headSet {Object toBement)
Object last ()

SortedSet subSet (Object from Bement, Object toBement)

SortedSet tailSet (Object fromBement)

nt
int lastindexOf (Object o)
Listerator listiterator ()
Listkerator listherator (int index)
List sublist {int fromIndex, int tolndex)

AbstractCollection

Abstract Colle

ion ()

String toString O

AbstractSet O

TreeSet

TreeSet ()

Tree Set (Comparator ¢)
TreeSet (Collection ¢}
TreeSet (SortedSet 5)

Object_clone @)

HashSet ()

Hash Set (Collection c)

Hash Set (it initial Capacity)

Hash Set (int initial Capacity, float loadFactor)

Object_clone ()

Abstractlist 0

Cloneable

void rermoveRange (int fromindex, int tolndex)

| RandomAccess

Araylist ()
ArayList (int initial Capacity)
AmrayList (Collection)

woid removeRangs (it fromindex, int talndex)

LinkedList ()
LinkedList (Collection ¢)

Object clane ()

woid ensureCapacity (nt min Capacity)
woid trimTo Size

getFirst

LinkedHash Set 0

LinkedHash Set (int initial Capacity)
LinkedHash Set (Collection c)

LinkedHash Set (int initial Capacity, float loadFactor)

getlast

addFirst (Object o)
addLast {Object o)
removeFirst
removelast ()

clone

Collections classes and interfaces
(classes at top, interfaces at
bottom) ___ {t.';?'"“*““‘*“""'l— .

(i a List)

ArrayList {is a Clonable,
List, Serializable)

HashSet iz a Clonable,

T — [Serializable, Set)
1 Collection (i & Set) B
{is & collection) | [TreeSet (is a Clonable,

Serializable, SortedSet)

(oot [aree]

_HashMap (is a Clonable,
Map, Serlalizable)

AbstractMap| | | TreeMap (is a Clonable,
(is a Map) Serializable, SortedMap)

| | WeakHashMap
(iz a Map)

List
Collection
Set H{ sortedset

Comparator

[terator — List lterator

Map —1 SortedMap

Map.Entry

Handy Refs: Java Collections
Framework documentation

» Introductory page:
o http://java.sun.com/j2se/1.5.0/docs/quide/collections/
index.html

» Outline of the classes:
o http://java.sun.com/j2se/1.5.0/docs/quide/collections/
reference.html

» What’s new in JDK 1.5 and 1.6:
o http://java.sun.com/j2se/1.5.0/docs/quide/collections/
changes5.html
o http://java.sun.com/developer/technicalArticles/J2SE/D
esktop/javaseb/beta2.html

Specifying an ADT in Java

» The main Java tool for specifying an ADT is ...
javatil + ... an interface
Interface Collection<E> \\-: axample: The java.util.Collection interface.

» Some important methods from this interface:

boclaan

add ([E 0]
Enszures that this collection contains the specified element (optional operation).

boolean

contains (Cbhject o)
Eeturns true if this collection contains the stecified eletnent.

isEmpty ()
Eeturns true if this collection contams o elements.

boaolean

beslean | emove (Chiect o)

Eemoves a single mnstance of the specified element from this collection, if it 15 present
(optional operation).

int lgjze ()
Feturns the number of elements n this collection.

Iterator<E>

iterator ()

Feturns an iterator owver the eletnents in this collection.

Iterators

» Consider a loop to fund the sum of each
element in an array:

for (aint 1 = 0; 1 < ar.length; 1++) {
sum += ar[i];

}

We want to generalize this beyond
arrays

What's an iterator?

» More specifically, what is a java.util. lterator?
> It's an interface:
- Interface java.util.lterator<kE>
- with the following methods:

hasHext (]
Eeturnz crue if the teration has more elements.

ly]

next [
Eeturnz the nest element in the teration.

veid! y emove ()

Eemowes from the undetlying collection the last element returned by the tterator {optional operation).

» We create a new concrete instance of an iterator, but use

an interface return type (using polymorphism). This is
what a does.

» The advantage is that if we change the type of collection
used in main(), then we don’t have to change the iterator

Example: Using an Iterator

ag Is a Collection object.

for {(Iterator<Integer> i1tr = ag.iterator(); itr.hasNexti);
sum += i1tr.next{):;
Svatem. out. printlnisum) ;

Using Java 1.5’s “foreach” construct:

// New approach that uses an implicit iterator:
for (Integer wal : ag)

sum += +wwal;
d3vatem. out. println{sum) ;

)

What's an iterator?

» More specifically, what is a java.util. lterator?
> It's an interface:
- Interface java.util.lterator<kE>
- with the following methods:

boolean

hasHext (]
Eeturnz crue if the teration has more elements.

ly]

next [

Eeturnz the nest element in the teration.

veid! y emove ()

Eemowes from the undetlying collection the last element returned by the tterator {optional operation).

» Why do iterators have their own remove method, separate
from the Collections’ remove?

boolezan

hasHext ()
Eeturns true if the tteration has more elements.

L]

next (]
Eeturns the nesxt element in the tteration.

woid

remove [
Eemowes from the underlying collection the last element returned by the tterator (optional operation).

An extension, Listlterator, adds:

boolean

hasPrevious ()
Eeturns true if this list tterator has more elements when traversing the list in the reverse direction

int

nextIndex ()
Returns the index of the element that would be returned by a subsequent call to nexc.

Object

previous ()
Returns the prewous element i the hst

int

previousIndex)
Eeturns the index of the element that would be returned by a subsequent call to previous.

woid

gset (Chiject o)
Eeplaces the last element returned by next or previous with the specified element (optional operation).

Sort and Binary Search

» The class provides static methods
for sorting and doing binary search on arrays.

=tatic int

hinarySearch(Chiject[] a, Chiject key)
=eatrches the speciied array for the speciied object using
the binatry search algorithin.

=tatic int

bhinarySearch(Chject[] a, CUhject key, Comparator o)

=earches the specified array for the specified object using
the binary search algorithin.

=atzic woid

sort (Chject[] a)
wotts the spectiied array of objects mto ascending order,
according to the patural ordering of its elements.

=tatic woid surtiﬂhject[] 8, Cgmparatﬂr GJ

wotts the speciied array of objects according to the order
cuced by the specified comparator,

Example: Using an lterator

ag can be any Col lection of Integers

for {(Iterator<Integer> i1tr = ag.iterator(); itr.hasNexti);
sum += i1tr.next{):;
Svatem. out. printlnisum) ;

In Java 1.5 we can simplify it even more.

// New approach that uses an implicit iterator:
for (Integer wal : ag)

sum += +wwal;
d3vatem. out. println{sum) ;

Note that the Java compiler translates the latter code into the former.

)

Tangent: Iterating over an enumerated type

—la== EnumTe=t {
genun MyColors {orangs. blue, vellow, green. red}:

rublic static void main (String[] args) { e CihProgram Files' Xinox S
for (MyColors o @ MyColors . walue=s()) {
Sv=temn.out . printlnic): orange
} blue

MyColors coc = MyColors. blue; "}."'E'l].CIUJ
. grreen
=switch (cc) {

CAa=E Orange: rEd
Sy=tem.out . println{"It 1= oranges!") I':llL.IE'
breal: ;

i Press any key
Sy=tem.out . printlni"0Oh no! Hot gresn!");
breal:;

ca=s blue:

Sy=tem.out . println"blus");
breal;

default:

Sw=ten.out . printlni "other")

Additional Methods from the
Collection Interface

>

addAll - add all of the elements from another
collection to this one

containsAll - does this collection contain all of
the elements of the other collection?

removeAll - removes all of this collections
elements that are also contained in the other
collection

retainAll - removes all of this collections
elements that are not contained in the other
collection

toArray - returns an array that contains the same
elements as this collection.

Sort and Binary Search

» The java.util .Arrays class provides static methods for

sorting

and doing binary search on arrays. Examples:

=tatic int

hinarySearch(Chiject[] a, Chiject key)
=eatrches the speciied array for the speciied object using
the binatry search algorithin.

=tatic int

bhinarySearch(Chject[] a, CUhject key, Comparator o)

=earches the specified array for the specified object using
the binary search algorithin.

=atzic woid

sort (Chject[] a)
wotts the spectiied array of objects mto ascending order,
according to the patural ordering of its elements.

=tatic woid

sort (Chject[] a, Comparator o)

wotts the speciied array of objects according to the order
cuced by the specified comparator,

Sort and Binary Search

» The Java.util.Collections
class provides similar static methods
for sorting and doing binary search on
Collections. Specifically Lists.

» Look up the details in the
documentation.

The weiss.util and
weiss.nonstandard packages

» In weiss.util, the author shows "bare bones"
possible implementations of some of the
classes in java.util.

» He picks the methods that illustrate the

essence of what is involved in the
implementation, for educational purposes.

» Some other Data Structures classes are in
weiss.nonstandard.

The weiss.util and
weiss.nonstandard packages

» In weiss.nonstandard, the author shows
implementations of some common data
structures that are not part of the java.util
package, and he also shows alternate
approaches to implementing some classes
(like Stack and LinkedList) that are in
java.util.

The weiss.util and
weiss.nonstandard packages

» If you followed the directions in assignment
1, both of these packages should be
accessible to your code.
> import weiss.nonstandard.*;

» Documentation is available, and you can copy
It to your computer.

Now that we know about using
some data structures ...
» It’s time to look at an implementation.

List Interface (extends Collection)

» A List is an ordered collection, items accessible by
position. Here, ordered does not mean sorted.
» interface java.util.List<E>

» User may insert a new item at a specific position.
» Some important List methods:

Yol add (int index, E element)

Inserts the spectied element at the spectfied posttion m this bst (optional operation).

[}

get (int index)
Eeturns the element at the specified postion i this hst.

int

index0f (Cbject o)

Eeturns the mdex m this bst of the first occurrence of the spectfied element, or -1 4
this list does not contan this element

remove [int index)

Eemoves the element at the specified postion i this hist (optional operation).

Elget (int index, E element]

Replaces the element at the spectfied postion m this het with the specidied element
(optional operation).

ArrayList implementation of the List
Interface

» Store items contiguously in a "growable” array.
» Looking up an item by index takes constant time.

» Insertion or removal of an object takes linear time
in the worst case and on the average (why?).

» If Comparable list items are kept in sorted order in
the ArrayList, finding an item takes log N time
(how?).

» Let’s sketch some of the implementation together.

- Fields, constructor for empty list.

